基于主动抗蛇行减振器的高速转向架分岔控制与复杂运动分析
为保障高速动车组蛇行稳定性并提升临界速度,开展基于主动抗蛇行减振器的车辆系统分岔特性控制研究,建立了包含刚性转向架横移/摇头与车体横移的动力学简化模型,结合实测磨耗后期的车轮踏面数据给出了非线性轮轨关系;在传统被动悬挂的基础上并联主动抗蛇行减振器,基于转向架摇头控制分析了车辆系统的Hopf分岔及分岔后的复杂运动。分析结果表明:线性刚度与线性阻尼控制均能延后Hopf分岔点,即能够直接提高车辆系统的蛇行临界速度,从被动状态下247 km·h~(-1)提高至328 km·h~(-1);线性刚度控制不影响分岔后的轮对横移量,将蛇行频率从5 Hz提高至7 Hz,线性阻尼控制能有效降低分岔后的极限环幅值与蛇行频率;非线性刚度与阻尼控制不改变车辆的临界速度,且二次项控制增益将引起车辆系统产生不稳定的极限环;三次项控制增益均可以降低分岔后的极限环幅值,其中三次项刚度控制会提高蛇行频率,三次项阻尼控制能够抑制蛇行频率;传统被动悬挂下车辆在发生Hopf分岔后,系统将经历极限环运动进入倍周期分岔进而通向混沌态,而线性控制在车速为386 km·h~(-1)时发生超临界Hopf分岔后能维持稳定的极限环单周期运动,其最大李雅普诺夫指数始终小于0,可以有效避免车辆系统产生复杂的混沌运动,但非线性控制的作用效果有限。
交通运输工程学报
2025年01期
立即查看 >
图书推荐
相关工具书